Evaluation of in vitro spermatogenesis using poly(D,L-lactic-co-glycolic acid) (PLGA)-based macroporous biodegradable scaffolds.

نویسندگان

  • Jae Ho Lee
  • Jeong Hyun Oh
  • Jae Hoon Lee
  • Mi Ran Kim
  • Churl K Min
چکیده

Successful in vitro differentiation of spermatogenic cells into spermatids appears to offer extremely attractive potential for the treatment of impaired spermatogenesis and male infertility. Experimental evidence indicates that biocompatible polymers may improve in vitro reconstitution and regeneration of tissues of various origins. Here, we fabricated highly porous biodegradable poly(D,L-lactic-co-glycolic acid) or PLGA co-polymer scaffolds by combining the gas-foaming and salt-leaching methods, using ammonium bicarbonate as a porogen, which allowed us to generate polymer scaffolds with a high density of interconnected pores of 400-500 µm in average diameter, concomitant with a high malleability to mould a wide range of temporal tissue scaffolds requiring a specific shape and geometry. The PLGA scaffolds were biocompatible and biodegradable, as evidenced by the fact that they survived almost 3 month long subcutaneous xenografting into immunodeficient host mice and became easily destroyable after recovery. Immature rat testicular cells that were seeded onto the surface of the scaffold exhibited about 65% seeding efficiency and up to 75% viability after 18 days in culture. Furthermore, our scaffolds enhanced the proliferation and differentiation of spermatogenic germ cells to a greater extent than conventional in vitro culture methods, such as monolayer or organ culture. Taken together, an implication of the present findings is that the PLGA-based macroporous scaffold may provide a novel means by which spermatocytes could be induced to differentiate into presumptive spermatids.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of antibacterial electrospun Poly lactic-co–glycolic acid nanofibers containing Hypericum Perforatum with bedsore healing property and evaluation of its drug release performance

Skin drug delivery systems with controlled release are suitable means for the local transfer of pharmaceutical compounds to the damaged and healthy layers of skin. Nanofibrous membrane prepares uniform moisture in the wound environment with less accumulation of fluid secretion due to its variable pore size. Electrospinning takes advantage of using herbal extracts in the form of electrospun nano...

متن کامل

Preparation of antibacterial electrospun Poly lactic-co–glycolic acid nanofibers containing Hypericum Perforatum with bedsore healing property and evaluation of its drug release performance

Skin drug delivery systems with controlled release are suitable means for the local transfer of pharmaceutical compounds to the damaged and healthy layers of skin. Nanofibrous membrane prepares uniform moisture in the wound environment with less accumulation of fluid secretion due to its variable pore size. Electrospinning takes advantage of using herbal extracts in the form of electrospun nano...

متن کامل

Loading of Gentamicin Sulfate into Poly (Lactic-Co-Glycolic Acid) Biodegradable Microspheres

  Objective: In dental treatments, use of carriers for targeted antibiotic delivery would be optimal to efficiently decrease microbial count. In this study, gentamicin was loaded into polylactic co-glycolic acid (PLGA) microspheres and its release pattern was evaluated for 20 days.   Methods: In this experimental study, PLGA microspheres loaded with gentamycin were produced by the W/O/W method....

متن کامل

Poly (Lactic Acid)Nanofibres as Drug Delivery Systems: Opportunities and Challenges

Numerous Scientists have discovered the procedure of nanotechnology, explicitlynanofibers, asdrug delivery systems for transdermal uses. Nanofibers canbe used to deliver drugs and are capable of controlled release for a continued periodof time. Poly (Lactic Acid) (PLA) is the lastly interesting employed synthetic polymer in biomedical application owing to its well categorized biodegradable prop...

متن کامل

Anticancer Activity of Nanoparticles Based on PLGA and its Co-polymer: In-vitro Evaluation

Attempts have been made to prepare nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) and doxorubicin. Biological evaluation and physio-chemical characterizations were performed to elucidate the effects of initial drug loading and polymer composition on nanoparticle properties and its antitumor activity. PLGA nanoparticles were formulated by sonication method. Lactide/glycolide ratio ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of tissue engineering and regenerative medicine

دوره 5 2  شماره 

صفحات  -

تاریخ انتشار 2011